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Event-phase-space structure: an alternative to quantum 
logic 
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Institute of Physics, Gdansk University, 80-952 Gdansk, Poland 

Received 14 September 1978, in final form 15 July 1979 

Abstract. The main aim of this paper is to examine two new possibilities in the axiomatic 
foundations of quantum mechanics: first, the possibility of introducing a non-symmetric 
transition probability between pure states, and second, showing that the concept of 
orthocomplementation in the logic of events is unnecessary and of secondary importance. 
Presented here is an axiomatic scheme, which does not involve the concept of orthocom- 
plementation and yet has all the advantages of the well-known quantum logic axiomatics, 
because our generalised logic of events admits an extension, which is a complete ortho- 
complemented orthomodular lattice with the covering law holding in it. Thus, the approach 
to quantum axiomatics presented here may be seen as answering both the old questions of 
the quantum logic approach (e.g. the questions of the complete lattice structure of the logic, 
atomicity, the validity of the covering law) and the question concerning the necessity of the 
orthocomplementation in the logic of events, recently raised by Mielnik. 

1. Introduction 

The purpose of this paper is to indicate two new possibilities in the axiomatic 
foundations of quantum theory: first, the possibility of introducing a non-symmetric 
transition probability between pure states (see also Guz 1979), and second, showing 
that the concept of orthocomplementation in the propositional logic is unnecessary. 
This confirms the recent claim (Mielnik 1976) that the orthocomplementation, having 
in fact no physical justification, is of secondary importance for quantum axiomatics. 

The postulates which we assume here are, in fact, implied by those of the well- 
known quantum logic approach (Guz 1978a). Later on (§ 5) all these axioms are 
reformulated in terms of the transition probability and the filters (operations) acting on 
the set of pure states of the physical system under study. This leads us to the concepts of 
transition probability space (see also Guz 1979, where this notion has been introduced) 
and filter, the latter being defined as an operation transforming the former into itself. 

Presented here is a system of axioms possessing all the advantages of the recently 
formulated one (Guz 1978b), but without any reference to orthocomplementation. Our 
generalised propositional logic (called here the logic of events) admits an extension, a 
complete orthocomplemented orthomodular lattice in which the covering law holds 
(§ 6), and therefore the well-known representation theorem (e.g. Piron 1964, 
MacLaren 1964, Varadarajan 1968, Maeda and Maeda 1970) holds for it, provided we 
assume the extended logic to be irreducible and of projective dimension not smaller 
than four. Therefore, the approach to quantum axiomatics presented here may be seen 
as answering both the old questions of the quantum logic axiomatic framework (e.g. the 
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questions of the complete lattice structure of the logic, atomicity, the validity of the 
covering law) and the question of the existence of the orthocomplementation in the 
logic, which is here shown to be of secondary importance for the axiomatics. 

2. Basic axioms and definitions 

We assume that to every physical system there corresponds a pair (L,  S) consisting of 
two sets L and S, whose elements are called events (propositions, questions, yes-no 
measurements) and states, respectively, and impose the following postulates, which 
relate L to S. 

(Al) .  With every pair a EL,  m E S there is associated a real number ( a ,  m )  
belonging to the interval CO, 11, which we interpret as the probability of the occurrence 
of an event a in a state m. 

Owing to the axiom (A2) one can regard any event a E L  as the function from S to [0, 11 
defined by a ( m )  = ( a ,  m ) ,  m E S. Define now orthogonality and partial ordering in L by 
putting 

(A2). If ( a ,  m )  = (b, m )  for all m E S, then a = b. 

€or all m E S. 
a l b i f f  a ( m ) + b ( m ) s l  
a s b  iff a ( m ) s b ( m )  

For every M E L we define M' to be the set of all a E L such that a l. b for all b E M. 
For the case M = { a } ,  we will write a' instead of {a}'. Observe that a s b  leads 
immediately to b' E a'. 

We will call an event a E L empty (or zero), and denote it by 0, if (a,  m )  = 0 for all 
m E S. An event b E L  is said to be trivial, and we denote it by 1, if (b,  m )  = 1 for every 
m E S.  Note that whenever 0 and 1 exist in  L: they are obviously unique, and for all 
a E L  we have 

(i) O s a s l ,  
(ii) O ia ,  

(iii) 1 dI. a ,  provided a # 0. 

(A3). There is a subset P E  S, whose members we will call pure states, with the 
Our next axiom is (compare Guz 1978a) 

following properties: 
(i) a L b  implies a ( p )  = 1 and b ( p )  > 0 for some p E P ;  

(ii) a <  b implies a(q )  > O  and b(q )  = 0 for some q E P ;  
(iii) for every p E P there exists a E L such that a ( p )  = 1 and a ( y )  < 1 for all q E P, 

(iv) for every non-zero a E L  there is a p E P such that a ( p )  = 1. 
q f p ;  

We shall call the set L the logic of euenrs (or the logic ofpropositions) associated with a 
physical system under study. 

Remark. Note that by (A3(iv)) the orthogonality defined above is proper i.e. we 
have a d  a for every non-zero a E L. 

Now let ml and in2 be two arbitrary states of the physical system; then we will call 
the number 

(m2:ml)=inf{a(m2): a ~ L , a ( m l ) = l )  

the degree of dependence of m2 on ml (Guz 1975b). 
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One can easily show (Guz 1975b) that when ml and m2 are the usual quantum 
mechanical pure states (i.e., the rays in a Hilbert space), the number (ml : m2) gives us 
the well-known transition probability between m l  and m2, and when ml and m2 are 
mixed ones (that is, the von Neumann density operators), the number ( m l : m 2 )  
coincides with the so-called semi-inner product between m l  and m2, the latter being 
defined by (Kossakowski 1972) 

[ml, m2l= llm2ll Tr(ml sgn md,  
where 11 - I( stands for the trace-norm of the Banach space T J H )  of the trace-class 
operators acting in the Hilbert space H (see e.g. Schatten 1960), and sgn m(m E T J H ) )  
is defined as 

m 

sgn m = sgn t E(dt) ,  

where E is the spectral measure of m. 
In the general axiomatic framework based on postulates (Al)-(A3) presented here 

one immediately finds that, for any two pure states p ,  q E P, ( p  : q )  = ( s ( q ) ) ( p ) ,  where 
s ( q ) ,  the so-called support of q, is defined below. 

Thus, the transition probability defined here is evidently non-symmetric with 
respect to the variables p and q. 

Now, we shall show some consequences of axioms (Al)-(A3). Let a E L  and m E S.  
We call the event a E L  a support (or carrier) of a state m E S (see Zierler 1961, Pool 
1968), if 

I-, 

(i) a ( m ) = l ,  
(ii) a L b  implies b(m)>O. 

We shall prove that: 
(1) Each pure state p E P has a support a E L, and a ( q )  < 1 for every pure state q # p .  

Proof. Let p E P ;  by (A3(iii)) there exists a E L  such that a ( p )  = 1 and a(q)  < 1 for all 
pure states q # p .  Let b EL,  b h  a. By (A3(i)) and (A3(iv)) there is an r E P such that 
a ( r )  = 1 and b ( r ) > O ,  but, because of (A3(iii)), r = p .  Thus, we have shown that 

V p  E P 3 a  E L  such that a ( p )  = 1 and 

that is, the event a is a support of p .  

proof of the statement is thus complete. 

V b  E L  such that b L a ,  b ( p )  > O ,  

At the same time we proved (see above) that a ( q )  < 1 for every pure state q # p .  The 

(2) a s b iff a L  z bL, and therefore ai = 6' leads to a = b. 

Proof. It needs to be shown that a' 2 b' implies a c b. Suppose that c 1. b always 
implies c la; then, ir, particular, s l b implies s l a  for all supports s of pure states, 
which exist by (l), but this means, by the definition of the support, that for every p E P 
with b ( p )  = 0 we have also a ( p )  = 0; and hence a s b by (A3(ii)), as claimed. 

(3) The support of m, whenever it exists, is uniquely determined by the state m. 
Moreover, it is the smallest element of the set {b  E L : b(m)  = 1). 

Proof. Note that when a E L  is a support of m, then a L  = {b  E L :  b ( m )  = 0);  hence the 
uniqueness of a follows from (2). 
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Suppose now that b ( m )  = 1, b E L ,  and let c i b ;  then, obviously, c ( m )  = 0, and 
hence c i a  (see the definition of the support). We have thus proved that b ' c  a' and 
hence a =s b by (2). Our statement is. therefore proved. 

The support of m, provided it exists, will be denoted by s(m).  
(4) a 6 b 3 3 p  E P such that a ( p )  = 1 and b(  p )  < 1 or, equivalently, 

( V p  E P a ( p )  = 1 + b ( p )  = 1)+ a s b. 

Proof. Suppose a % b ; then a ' 2 b' by (2), and therefore there exists c E L ,  c 1 b, such 
that c L  a ;  hence one finds by (A3(i)) a pure state p E P with a ( p )  = 1 and c ( p )  > 0; 
hence b ( p ) < l , a s c i b  implies b ( p ) s l - c ( p ) .  

( 5 )  The correspondence s : p + s ( p )  is one-one. 

Proof. Indeed, suppose that s ( p )  = s(q) forsomep, q E P ;  then ( s ( p ) ) ( q )  = (s(q))(q) = 1, 
and hence q = p by (1). 

Note that owing to (A3(ii)) every event a E L  can be considered as a function on P. 
By (A3(ii)) and (A3(i)) we have also: 

a i b i f f  a (p )= l impl i e sb (p )=O,  

a s b iff b ( p )  = 0 implies a ( p )  = 0, 

and by (4) we obtain 

a s b iff a ( p )  = 1 implies b(p)  = 1. 

We are now in a position to introduce some useful definitions. 
Suppose (L,  P )  to be a pair consisting of a set P together with a set L of functions 

(a) a is said to be disjoint with b(a Lb in symbols; a, b E L ) ,  if a ( p )  = 1 implies 

(b) We shall say that a is orthogonal to b (a, b E L) ,  and write a 1.6, if a L b and b L a  ; 
(c) We shall write a s o b  and a s1 b respectively, if ao 2 b o  and a' G b' respectively, 

where the following abbreviations are used: xo stands for the set (p E P :  x ( p )  = 0) and x' 
for (p E P :  x ( p )  = l}, x E L ;  

(d) We shall say that a implies b, or that a is stronger than b, and write a s b, if a GO b 
and a s1 b. 

It can easily be verified that a s b I c leads to a I c. In other words, we have b' c a -  
whenever a < b. 

We shall call the pair (L,  P ) ,  where L E [0, 119 an event-phase-space structure, if the 
following hold for (L,  P) :  

(EPS 0) :  For every non-zero a E L there exists p E P such that a ( p )  = 1 ; 
(EPS 1): a L b implies b La, and therefore a i b iff a ( p )  = 1 implies b ( p )  = 0; 
( E P S ~ ) :  a s o b a n d b s o a l e a d s t o a = b ;  
(EPS 3): For every p E P there exists a E L  such that a ( p )  = 1 and a (q )  < 1 for all 

We will call the elements of L and P, as before, events and pure states respectively; 
the sets L and P will be called the logic of events and the phase space of the physical 
system under study. 

from P to [0, 13 (that is, L c [0, l]'), and then define the following: 

b ( p )  = O ( p  E P ) ;  

q E p ,  qfp.  



Event-phase-space structure 885 

Note that having assumed (EPS 0 ,1 ,2 ,3 )  for (L,  P )  we are in a position to reproduce 

( E P S ~ )  a s o b i f f  a i b l ;  
(EPS 5) a ' s  b' implies a s o b ;  

all the statements (1)-(5), but now with C replaced by Co. Thus we have: 

and, obviously, the support of p is now the smallest element of the set {b  E L :  b ( p )  = 1) 
in the sense of the partial ordering so. Later on, we shall write d instead of Co. 

Remark. For an event-phase-space structure, we take as the definition of the 
transition probability 

( P :  4 )  = ( s ( q ) ) ( p ) ,  
where s ( q )  is the support of q. 

Note, further, that if we assume additionally the postulate 
(EPS 3'): a s o b  implies a' c b',  

then, by repeating the arguments used by us previously (see Guz 1978a), we can deduce 
the following facts. 

(i) The logic of events (L,  s)  is atomic, and s :  p + s ( p )  is a one-to-one mapping of 
the set P of pure states onto the set A(L)  of all atoms of the logic L.  

(ii) For every non-zero event a E L  one has 

a = V{s(p): P E  a ' ) ,  
and hence one finds L to be atomistic, as every non-zero event a E L  is the least upper 
bound of the atoms s ( p )  contained in it. 

Remark. (EPS 3') implies, obviously, the coincidence of the partial orderings s 
(which itself is equivalent to s1 by (EPS 5)) and f .  

3. Two extensions of the logic of events 

Suppose that (L,  P )  is an arbitrary event-phase-space structure, and define L' as the 
family of all subsets M G L such that M = M". Obviously, M EM" for every subset 
M c L, and it is not difficult to check (see e.g. MacLaren 1964) that under the set 
inclusion L becomes a complete orthocomplemented lattice with joins and meets given 
by 

V M = ( u q  and 1 = nM1 I 

({M,} is an arbitrary family of members of i), and with the orthocomplementation given 
by M + M L ( M  E i). 

Moreover, the mapping i :  a + ail ,  a E L ,  gives us the embedding of (L,  f ,  I) into 
(L,  ~,i), as it is easily seen to have the properties of an orthoinjection, i.e. 

(i) a < b iff i ( a )  c i(b), 
(ii) a i b iff i ( a )  i i (b ) .  
Note also that i does not coincide now with the so-called completion by cuts of L, as 

was the case when L possessed an orthocompiementation and when the orthogonality 
was defined by a I b  iff a s b '  (see Bugajska and Bugajski 1973c, MacLaren 1964). 
Only the following can now easily be established (we use here the notation from 
Bugajska and Bugajski 1973c, i.e. for M c L we write MV = { a  E L :  a 3 b for all b E M }  
and M A  = { a  E L:  a 6 b for all b E M } ) :  
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A V A  (i) For every a E L  we have a''= a = a 
(ii) For every M E  L we have MV = { a  E L :  a l l  z M } ;  hence MVA = OacMv a 2 

M", and therefore M V A  = M implies MVA = M" = M ;  but, in general, MVA = ML' 
does not hold for all M s L. 

(iii) If one assumes that for every a E k there exists a b E L  such that a' = b", which 
is easily seen to be equivalent to the existence of an orthocomplementation in L, then 
M v A  = M" for an arbitrary M c L, that is, i then coincides with the completion by cuts 
of L. 

Also (L,  S ,  I) may be embedded into an orthocomplemented complete lattice. This 
extension is realised as follows. Define the orthogonality in the set P of pure states by 
putting 

~ 

li 

p I4 if? a ( p )  = 1, a ( q )  = 0 and b ( p )  = 0, b ( q )  = 1 

for some a,  b E L, and, for any Q E P, define Q' to be the set of ail p E P such that p I q 
for all q E Q, Obviously, Q E Q'- for every U 5 P. Let C(P,  -1) = {Q E 4:  Q = a"'}. 
The family C(P, I), called the phase geomerry associated with the physical system under 
study (see Guz 1975a, 1978a), becomes a complete orthocomplemented lattice with 
joins and meets given by 

({a,) is any family of members of C(P,  I)), and with the orthocomplementation defined 
by (2 + Q', Q E G(P, I ) .  

Remark. For the empty set 0 we put, by definition, 0' == P, which leads immedi- 
ately to 0, P E  C(P,  1). 

Define now the mapping from L to C(P, I) by 

j ( a )  = a l lL ,  UEL. 

One can prove the following properties of the mapping 1: 
(i) a S b implies j ( a )  s j ( b ) ,  

(ii) a I b implies j ( a )  i j ( b ) ,  
(iii) j (0 )  = 0 and j(1) = P, provided 0 and 1 exist in L. 

The properties (i) arid (iii) are obvious. In order to show (ii), it is sufficient to note that 
a i b leads to a' I bl ,  and the latter we prove as follows: p E a ' ,  q E b' imply s ( y )  s a 
and s ( q )  d b ; hence s ( p )  I s ( q ) ,  as a 1. b, and hence p I q (see the lemma below), which 
shows that a ' l  b ' ,  as claimed. 

Lemma 3.1. For p ,  q E P we have p 1.4 if and only if s ( p ) I s ( q ) .  

Proof. Assume first that p 1.4; then, by the definition, there are a ,  b EL such that 
n ( p ) = l ,  a ( q ) = O  and b ( p ) = O ,  b ( q ) = l ;  hence, for example, s ( p ) < a  and s ( q ) i a ,  
which leads to s ( p ) l s ( q ) .  The converse statement is obvious, as we have, when 
s(p)J-s(q) ,  

( s ( p ) X p )  = 1, ( s ( q ) ) ( p )  = 0 ,  ( s ( q ) ) ( q )  = 1: and ( s ( p ) ) ( q )  = 0,  

which means that p _L 4 as desired. 
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Since, in general, j is now not an orthoinjection, we find C(P,  1) to be inappropriate 
as the extension of the logic (L,  G ,  1), although for the case where L is orthocom- 
plemented, it can be shown (Guz 1978b) that C(P,  1) is orthoisomorphic to i, and 
therefore C(P,1 )  and i are then equally good as extensions of L. 

4. Further axioms and their consequences 

Suppose (L,  P )  to be an arbitrary event-phase-space structure, and assume, after 
Mackey (see e.g. Mackey 1963), the so-called ‘orthogonality postulate’: 

(Bl )  For every (finite or denumerable) sequence {ai} of pairwise orthogonal events, 
its sum Ci ai belongs to L. 

Remark. When {a i}  is infinite, the sum X, ai is meant in the usual sense of pointwise 
convergence of the series, i.e, 

for all p E P. 

the partial ordering S ) .  This is the content of the following statement. 
The sum C, a, is easily shown to be the least upper bound of all a,’s (in the sense of 

Proposition 4.1. C, a, = V, a,, where a,  are mutually orthogonal events. 
Before proving this proposition, we need to prove a lemma. 

Lemma 4.2. Let U = C, U ,  for some orthogonal sequence {a , }  c L. Then b I a if and 
only if b i a, for each i = 1, 2,  . . . , or, in other words, a L  = n, a:. 

Proof. The ‘only if’ part of the lemma is obvious, since by (Bl )  we have a 3 a, for all i, 
and hence (see (EPS 4)) a l  E a: for all  i. 

To prove the ‘if’ part, assume b I a, for every i, and let U = C, a,. By applying the 
axiom (B1) to the orthogonal sequence {b, u l ,  a2,  . . .} we find 

for all p E a>, and hence b ( p )  + a ( p )  < 1 for all p E P ;  hence b i a. 
The lemma is thus proved. 

The proof of proposition 4.1 is now straightforward. As we know that a b a,  for all i, 
it remains to be shown that b 3 a for every b satisfying b b a, for all i -= 1, 2, . . . But 
b b a, (all i) leads to h c n, a :  = U’, where the last equality holds by lemma 4.2; and 
hence b b U by (EPS 4). 

This completes the proof of proposition 4 .  I. 

N o w  we assume the postulate which is known as the orthomodulority of the logic of 

(B2) I f a ~ h ( a , b E L ) , t h e n h - a E L .  
events: 
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Remark. By (B l )  we have a i b iff a ( p )  + b(  p )  < 1 for every p E P, and by (B2) we 
obtain a 6 b iff a ( p )  s b ( p )  for all p. Hence, in particular, 6 and c coincide, and as a 
consequence the statements (i) and (ii) given at the end of § 2 hold for (L,  P) .  In the 
sequel we will always, in this section, write s to denote the partial ordering in L. 

Our next axiom is the so-called 'projection postulate' (compare Bugajska and 
Bugajski 1973b, c), an abstract form of the famous von Neumann projection postulate 
(von Neumann 1932). 

(B3) If for a E L and p E P we have 0 < a ( p )  < 1, then there exist atomic events e S a 
a n d f l a  such that e ( p ) = a ( p )  a n d f ( p ) = l - a ( p ) .  

We complete our list of axioms by assuming the following: 
(B4) If 0 < ( p :  q )  < 1 for some p, q E P, then there is the unique pure state r E P such 

that r l q and ( p :  q )  + ( p :  r )  = 1. Moreover, if additionally a ( p )  = a ( q )  = 0 for some 
a E L ,  then also a ( r )  = 0. 

Lemma 4.3, Assume the validity of axioms (Bl)-(B4) for an event-phase-space 
structure ( L , P ) .  Then, for any pair of atoms e, f c A ( L )  there exists e v f  in L. 
Moreover, one then has e v f = g +f for some atom g, g if, provided e # f. 

Proof. Let e, f E A ( L ) ,  and let p = s-'(e), q = s-'(f) (see statement (i) at the end of § 2). 
One can assume without any loss of generality that 0 < ( p :  q )  < 1, since ( p :  q )  = 0 
implies s ( p ) i s ( q )  or e If, and the existence of e v f ( = e  +f) then follows from axiom 
(Bl)  and proposition 4.1; similarly, ( p :  q )  = 1 leads to s ( p )  s s ( q ) ,  and we then have 
e v f = e = f .  

By (B4) there then exists the unique pure state r 1. q such that ( p :  q )  + ( p :  I )  = 1, and 
the latter equality may be written as ( f + s ( r ) ) ( p ) =  1, since f =  s ( q ) I s ( r )  (see lemma 
3.1), and therefore e = s ( p ) S f + s ( r ) .  

We shall show that f + s ( r )  = e v f .  Suppose that a 2 e, f; one then needs to prove 
that a > f + s ( r ) .  By the orthomodularity of L one can write a =f+c, where c (being 
actually the difference a - f )  is orthogonal to f, and a 2 e = s ( p )  leads then to f(p) + 
c ( p )  = a ( p )  = 1; hence c ( p )  = 1 -f(p) # 0, 1, and therefore, by the first half of axiom 
(B3) one can choose an atom g s c such that g ( p )  = c ( p )  = 1 -f(p). For the pure state 
r' = s-'(g) we then have ( p :  r')+ ( p :  q )  = 1. On the other hand, g s c implies g If, since 
c 1 f, and therefore by the uniqueness requirement in (B4) we obtain r' = r, and hence 
g = s ( r ' )  = s ( r ) .  

Finally a 3 c 3 g = s ( r )  and a >f imply a > s ( r )  + f, as desired. The proof of the 
lemma is thus complete. 

Corollary 4.4. If e and f are atoms in L such that e, f i a for some a EL, then e v f 1 a 
also. 

Proof. One can assume, obviously, that e # f. Then, by lemma 4.3 we have e v f  = g +f 
for g =s(r ) ,  where r is chosen, for given p =s-'(e) and q =s-'(f), according to the 
prescription of axiom (B4). But e, f l u  means that a ( p )  = a(q )  = O ;  hence by the 
second half of (B4) one finds a ( r )  = 0,  and hence g = s ( r )  1 a. Finally, g If, g l a and 
f i a  imply g + f = e  v f l a ,  by lemma 4.2. 

Lemma 4.5. Assume the validity of axioms (Bl)-(B4) for an event-phase-space 
structure (L,  P) .  Then the atoms e and f in (B3) are determined uniquely by a and p. 
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Proof. Let us suppose that for two atoms el ,  e 2 s  a we have el(p)  = e z ( p )  = a ( p ) ,  where 
a ( p )  # 0, 1;  then, obviously, e l (p)  = e2(p) = (el v e 2 ) ( p )  = a ( p )  f 0, since el  v e 2 s  a 
(el v e2 exists by lemma 4.3). Similarly, if for two atoms el, e 2 1 a  one has e l (p)  = 
e2(p) = 1 - a ( p ) ,  one finds also e l (p)  = e2(p) = (el v e2)(p) # 0, as then el  v e21  a by 
corollary 4.4, which implies (e lv  e Z ) ( p ) + a ( p ) S l ;  hence l - a ( p ) = e l ( p ) = e z ( p ) s  
(el v e2)( p )  s 1 - a ( p ) ,  and hence the desired equality follows. 

Thus it remains to be shown that any two atoms el, e2 satisfying el(p)  = ez(p) = 
(el v e 2 ) ( p )  # 0 are equal. Suppose the contrary, that is, there exist two distinct atoms 
el # e2 such that the above equalities hold. By lemma 4.3 one can write el v e2 = 
el +fl = e2+f2, where fi are atoms such that fi .Lei ( i  = 1,2) .  Then, in particular, 
el v e2 3fl v f 2 ,  and hence by applying the orthomodularity of L one finds ei +fi = el v 
e2 = fl v f2  + c(c EL,  c I f 1  v f2), hence ei = (fl v f 2  -fi) + c, which leads to c s 
ei(i = 1,2) ,  and hence c = 0, since we assumed that el f e2. Thus el  v e2 =f1 vf2. Note 
that f l  # f2, as f l  = f 2  would imply el v e2 = fi ; hence el  = e2 = fi, which contradicts our 
assumption. On the other hand, el  v e2 = ei +fi(i = 1,2) ,  which implies e l (p)  = e2(p) = 
(e lvez) (p)=ei (p)+f i (p) ,  i = l ,  2; hence f i ( p ) = O  for each i = l ,  2. Hence s ( p ) l  
f i ( i  = 1,2) ,  which leads to s ( p ) I f l  v f 2  by corollary 4.4, hence (fl vf2)(p) =0 ,  and 
therefore (el v e2)(p) = 0-a contradiction. The proof of the lemma is therefore 
complete. 

Thus, as a consequence of axioms (Bl)-(B4) we found the following: 
(B3’) O < a ( p ) < l  impl iesa(p)=e(p)=  1-f(p)for twouniqueatomiceventsesa 

and f I a, or, equivalently, 
(B3”) 0 < a ( p )  < 1 implies a ( p )  = ( p  : q )  = 1 - ( p  : r) for two unique pure states q 

and r satisfying a(q)  = 1 and a ( r )  = 0. 
We shall refer to (B3’) or (B3”) as the standard form of the projection postulate, and 

we will denote q (see (B3”)) by p a  and r by p a .  Thus, we have a ( p a )  = 1, a ( p a )  = 0 (or, 
equivalently, s ( p , ) s a  and s ( p a ) l a )  and a ( p ) = ( p : p a ) = l - ( p : p a )  for all p with 
a ( p )  # 0, 1. Note also that p a  Iq“ for all p ,  q E P for which p ( a ) ,  q ( a )  # 0 ,  1. 

Lemma 4.6. Assume the validity of axioms (Bl),  (B2) and (B3’) for an event-phase- 
space structure (L, P) .  Then, for each e EA(L)  and a E L  there exists e v a in L. 
Moreover, if e g a ,  then e v u  = f + a  for s o m e f E A ( L ) , f i a .  

Proof. Let a E L ,  e E A(L), and let p = s-’(e). One can assume, without any loss of 
generality, that 0 < a ( p )  < 1, since a ( p )  = 0 implies e = s ( p )  -L a ; the existence of e v a 
then follows from (B 1) and proposition 4.1, and a ( p )  = 1 leads to e = s ( p )  s a and then 
e v a = a .  

Then, by the second half of (B3’), there exists a unique f~ A(L) such that f - L  a and 
f ( p ) = l - a ( p ) ; h e n c e ( f + a ) ( p ) = l  andhencee=s (p ) - f  -=z +a.  

We shall show that f + a  = e v a. Let b 2 e, a ;  one needs to prove that b 2 f + a .  By 
the orthomodularity of L one can write b = a + c, where c i a. Further, b 2 e = s ( p )  
leads to a ( p ) + c ( p ) = b ( p ) = l  and hence c ( p ) = l - a ( p ) # O ,  1. By the first half of 
axiom (B3’) one can then choose g EA(L)  with g C c and g ( p )  = c ( p )  = 1 - a ( p ) .  But 
g s c implies g 1 a, since c I a, and therefore by the uniqueness part of (B3’) one finds 
g = f. Finally, b 3 c 3 g = f and b a a imply b z-f+ a, as desired. This completes the 
proof of the lemma. 

If for all a E L  and e EA(L)  there exists a v e in L, we will then say that the atom 
adjoining holds in L. 
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Theorem 4.7. Assume for an event-phase-space structure (L, P )  the validity of axioms 
(Bl),  (B2), (B4) together with the first half of the projection postulate (B3), i.e. suppose 
that O <  a ( p )  < l (a  E I,, p E P )  implies the existence of an atom e s a with e (p)  = a ( p ) .  
Then the second half of this postulate is equivalent to any of the following conditions. 

(1) In L, both the atom adjoining and the following property hold: let G be a finite 
set of atomic events, say, G ={el, . . . , e,,} and let e be an atom such that e s V G and 
e 9 V  (G\{e,})foreveryj= 1 , .  . . , n;thenforanyparti t ionI u J = { l ,  2 , .  . , , n } , l n J =  
0, of the index set {1 ,2 , .  . . , n }  there exists an atom f E L  such that 

f s e v v e ,  and f s V e,. 
rcr I E J  

( 2 )  In L, besides the atom adjoining, the following holds: for any four atoms e, e l ,  
e2, e3 E A ( L )  (not necessarily all distinct) such that e 6 el v e2 v e3, e # e3, and e %  el v e2, 
there exists an atom f E A ( L )  such that f s e v e3 and f 6 el v e2. 

(3) In L, both the atom adjoining and the following property are fulfilled: for any 
a E L  and any atom e EL. not contained in a, a v e - a  is also an atom. 

(4) Besides the atom adjoining, the following is fulfilled in L :  for any a E L ,  a # 0,  1, 
and any atom e E L  there exist two atoms el ,  e2EL such that e l s a ,  e z l a  and 
e s e l v e z .  

( 5 )  In L, besides the atom adjoining, the covering law holds, that is, for any a E L  
and any atom e E L ,  a v e > b a a  implies either b = a  or b = a  ve. 

(6) In L, the atom adjoining holds, and there exists a dimension function on Lf, the 
set of finite elements? of L, that is, a function d from Lf to the positive integers (1, 2, . . .} 
possessing the properties 

(i) d is strictly increasing, i.e., d ( a )  < d ( b ) ,  whenever a < b(a ,  b E Lf), 
(ii) d ( a  v b )  + d(a A 6) = d ( a )  + d ( b )  for each pair a,  b E Lf for which a A b exists$. 
(7) Besides the atom adjoining, the following holds for L :  for any three finite events 

a ,  6, c E L  such that a s c alid b A c = 0, one has a = (a  v b )  A c, provided (a  v b )  A c 
exists in L. 

Proof. We will prove the theorem as the following chain of implications: (1) 3 (2) j 
(3)* the second half of ( a 3 ) 3 ( 4 ) 3 ( 5 ) 3 ( 6 ) 3 ( 7 ) 3 ( 1 ) .  

As the proof of the implications (1) 3 (2) .$ (3) and (4) 3 (5) 3 ( 6 )  3 (7) j (1) is 
simply a repetition (after some minor modifications) of that given by us previously (see 
Guz 1978b), we need only to prove the implications (3) j the second half of (B3) 3 (4). 

Assume the validity of (3) and then prove the second part of the projection postulate 
(B3). Suppose that 0 < a ( p )  < 1 for some a E L  and p E P, and let e = s ( p ) .  Since e 6  a, 
we obtain e v a - a E A ( L )  by (3). We also have ( e v a - a ) ( p ) = ( e v a ) ( p ) - a ( p ) =  
1 - a ( p ) ,  which is just the second half of (I33). 

Assume now the second part of (B3); both parts of the projection postulate are now 
valid, and we prove (4). Let a E L ,  a # 0 ,  1, and let e E A(L) .  Obviously, one can 
assume that e 9 a  and e h a .  For p =s-'(e) one then easily obtains O < a ( p ) <  1, and 
therefore there exist by (B3) two atoms el  6 a and e21. a such that e l ( p )  = a ( p )  and 
e2(p) = 1 - a ( p ) ;  hence, by using the fact that el  Le2, we find (el v e z ) ( p )  = 
el(p)  i- ez(p) = 1, which leads to e = s ( p )  6 el v e 2  as desired. 

The theorem is therefore proved. 

+ An event a E L  is said to be finite, if it is a join of a finite number of atoms. 
$ Q A b is then finite, provided a A b # 0.  For the zero event we put, by definition, d ( 0 )  = 0. Note also that n v b 
always exists for finite a, b EL, owing to the atom a-djoining i n  L. 
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5. Filters on the transition probability space 

It is convenient to adjoin to P((L ,  P )  being an arbitrary event-phase-space structure) 
some fictitious 'pure' state, called the zero state and denoted by 0, which is defined by 
the requirement that a(0 )  = 0 for all a E L .  More precisely, in order to define the zero 
state 0 one can use the observation that every pure state p E P may be regarded as a 
function on L, owing to the identification of p with the function 6: a + u ( p ) .  Indeed, to 
see that the correspondence p + $  is one-one, suppose that p = q  for some p ,  q E P ;  
then, in particular, ( s ( q ) ) ( p )  = ( s ( q ) ) ( q )  = 1 arid hence p = q, as ( s ( q ) ) ( p )  < 1 for all 
p # q .  Now, we define the zero state 0 as the zero function on L. Moreover, after 
identifying P with the se+ ?=@: p E P }  and considering the events from L as the 
functions on 6 u(0) (by putting a ( $ )  = a ( p )  and a (0) = 0), we also extend L by 
adjoining to it some new event 0, which we define as the zero function on @U {0}, and 
therefore 0 is the smallest element of the extended logic L U (0). 

The event 0 we will call the zero or impossible event. 
For the sake of brevity, we shall write Po instead of @ u(0) in the sequel and, 

similarly, Lo instead of L U (0). 
It is also convenient to extend the transition probability function onto a whole Po by 

putting (0: p )  = ( p :  0) = 0 for all p E Po. Note that for the extended transition prob- 
ability the previous formula will hold, i.e., ( p :  y) = ( s ( q ) ) ( p ) ,  if we put, by definition, 
s(0) = 0. For the zero state we also put, by definition, 0 I p  for all p E Po. 

One can easily show the following properties of the transition probability: 
(i) O s ( p : q ) s l f o r a l l p , q E P o ,  

(ii) ( p : q ) = O i f f p l q ,  
(iii) ( p :  q )  = 1 iff p = q. 
In the remainder of this section we will assume axioms (EPS 3') and (B3') for (L,  P). 

Any event-phase-space structure satisfying the above axioms will be called the 
standard one. 

Having assumed (B3') for (L,P) ,  one can define two families of mappings E,, 
F, : PO + PO, both indexed by members of Lo, by putting 

p a  if a b )  # 0 , 1  
Eap= p i f u ( p ) = 1  I 0 i f a ( p ) = O  

and 
p a  if a ( p )  f 0 , l  

F a p =  0 if a ( p ) =  1 I p i f a (p )=O,  
and write p a  in place of E,p and p a  instead of F,p. 

From the definition of E, and F, it follows that one can now write 
Note that now pa  I q a  for all p ,  q E Po, and obviously, 0, = 0" = 0 for every a E Lo. 

= ( p :  P a )  = 1 - ( p :  P " )  

for all p E PO, with only one exception, when we have p = 0 in the second equality above. 
Note that Eo = 0, where 0 denotes the zero mapping from Po to Po (defined by 

0: p + 0 for all p E Po),  and Fo = I ,  where I is the identity map from Po to Po. Note also 
that, by definition, p a  = 0 iff a ( p )  = 0 iff ( p :  p a )  = 0, and p" = O  iff either a ( p )  = 1 or 
p = 0 iff ( p :  p a )  = 0. 



892 Wawrzyniec G u z  

We shall interpret the transformations E,  and Fa as the filteringprocedures (briefly, 
filters) corresponding to the event (proposition, yes-no measurement) a E Lo. More 
precisely, we shall call E, the filter, and F, the dualfilter associated with a. Note that the 
correspondences a +E,, F, are one-one. In fact, suppose that E ,  = Eb for some a,  
b e L o ;  thenwe h a v e ( p : p , ) = ( p : p b ) f o r a l l p , o r a ( p ) = b ( p ) f o r a l l p ,  t h a t i s , a = b .  
Similarly, we prove that Fa = Fb implies also a = b. 

Remark. Note that when we assume all the axioms (Bl)-(B4) for an event-phase- 
space structure (L,  P ) ,  then s ( p " )  = s ( p )  v a - a  (where s ( p )  v a exists by lemma 4.6). 
In fact, if a ( p )  # 0, 1, this readily follows from (B3"), as for q with s ( q )  = s ( p )  v a - a  
(the latter being an atom by theorem 4.7, (3)) we have ( p :  q )  = ( s ( p )  v a ) ( p ) - a ( p )  = 
1 - a ( p ) ,  which means, by (B3"), that q = p a .  If a ( p )  = 0, we have s ( p )  l a ,  and hence 
s ( p ) v a - a = s ( p ) = s ( p " ) ,  as a (p )=Oimpl i e sp=p" ; i f  a ( p ) = l ,  we h a v e s ( p ) s a ,  
which leads to s ( p )  v a - a  = 0 = s ( p " )  since a ( p )  = 1 implies p a  = 0. 

Theorem 5.1. For every standard event-phase-space structure (L, P )  the following 
statements are true: 

(1) a(p , )  = 1, provided pa  # 0, and a ( p " )  = 0; 
(2) ( p :  p , )  = a ( p )  and ( p :  p a )  = 1 - a ( p ) ,  the latter being valid only for non-zero p ;  
(3) ( p :  p a )  = 0 implies p a  = 0 and ( p :  9,) = 0 for all q E Po, and, similarly, ( p :  p " )  = 0 

(4) all E ,  and F, are idempotent; 
( 5 )  E,F, =FOE, = 0 ,  that is, ( p " ) ,  = ( p , ) "  = 0 for all p € P o ;  
( 6 )  ( p :  p a )  = ( p :  4,) # 0 implies pa  = qa, and ( p :  p " )  = ( p :  9') # 0 leads to p a  = 4';  

leads to p a  = 0 and ( p :  4 ' )  = 0 for every q E Po; 

Proof. The statements (l), (2) and the implications ( p :  p , )  = OJp, = 0, ( p :  p a )  = 0 3  
p a  = 0 are obvious, as they follow directly from the definition of E, and Fa (see also 
(B3")). To prove the remaining part of (3), let us first asume that ( p :  p a )  = 0. Then 
a ( p )  = 0 by (2), and hence p a  = p  (see the definition of Fa) ,  which leads to ( p :  4,) = 
( p " :  4,) = 0 sincep" iq,. Suppose now that ( p :  p a )  = 0; then we prove that ( p :  4')  = 0 
for all q E PO. Of course, one can assume without loss of generality that p # 0 and a # 0, 
as otherwise the statement holds trivially. Then by using (2) one obtains a ( p )  = 1; 
hence pa = p  (see the definition of E,), and hence ( p :  q 4 )  = ( p a :  4 ' )  = O  as before. 
Statement (3) is therefore proved. 

We shall now prove (4) i.e. the idempotency of E, and Fa. By (2) and (1) we obtain 
(E,p: Ezp)  = ( p a :  ( p a ) , )  = a ( p , )  = 1, providedp, # 0, hence E2p = E,p. Whenp, = 0, 
we have E$ = 0 = E,p; thus E: =E,  indeed. Similarly, by (2) and (1) again, we find 
(F,p: F:p) = ( p a :  ( p " ) " )  = 1 - a @ " )  = 1, provided p a  # 0, and hence F:p = F,p; for 
p a  = 0 one has FZp = 0 = F,p, and thus we have shown F? =Fa, as desired. 

Toprove ( 5 ) ,  note that ( p a :  ( p " ) , )  = a ( p " )  = 0 by (2) and (1) respectively, and hence 
we find ( p " ) ,  = O  by (3). Similarly, by using (2) and (1) we obtain ( p a :  ( p , ) " )  = 
1 - a ( p , )  = 0 whenever pa # 0, and hence (p , )"  = 0 by (3); for pa = 0 we have also 
(p , )"  = 0. Statement (5) is thus proved. 

Note next that ( p :  p a )  = ( p :  4,) # 0, 1 and ( p :  p a )  = ( p :  q a )  # 0, 1 imply q, = p a  and 
qa  = p a  respectively, by the uniqueness requirement in (B3"), since a(q,) = 1 and 
a ( q " )  = 0 by (1) (obviously, we also use (2) in the proof). Of course, ( p :  p , )  = ( p :  4,) = 
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1 = ( p :  p a )  = ( p :  4") implies p a  = p  = qa and p a  = p  = q", and therefore statement (6 )  is 
proved. 

Finally, let us consider the filter E,(,), where q is a fixed element of Po, and let p E Po. 
By (2) we have ( p :  p S ( , ) )  = ( s ( q ) ) ( p )  = ( p :  q ) ,  and therefore p I q  iff ( p :  p s ( q ) )  = 0 iff 
ps (q )  = 0, the latter equivalence holding by ( 3 ) .  Therefore, if p b  9, we have p s ( q )  # 0, and 
then (see the definition of filter) s ( p S ( , J  6 s ( q ) ;  hence s (pS( , ) )  = s ( q ) ,  as the supports of 
non-zero pure states are atomic events. Hence pS( , )  = q, since the mapping s is one-one. 

This completes the proof of (7), and, at the same time, the theorem is proved. 

We shall now state some facts about the partial ordering and orthogonality in Lo. 

Proposition 5.2. For a,  b E Lo the following conditions are mutually equivalent: 
(i) a s b, 

(ii) EbEa = Ea, 
(iii) FaFb = Fb, 
(iv) Ra E Rb, 
(v) R" 2 R b ,  

where R ,  and R" stand for the ranges of E, and F,, respectively. 

Proof, The proof of the proposition will consist of the following two chains of 
implications: (i) =$ (ii) =$ (iv) =$ (i) and (i) 3 (iii) 3 (v) 3 (i). 

Let us assume (i) and then prove (ii), i.e. we shall show that ( P a ) b  = p a  for all p E PO. 
One can assume, without any loss of generality, that p a  # 0; then a ( p , )  = 1 by theorem 
5.1(1), which implies (see statement (2) of theorem 5.1) ( p a :  ( P a ) b )  = b ( p a )  = 1 by (i), 
and hence p a  = ( P a ) b  as desired. 

Similarly, having assumed (i) one easily shows that ( p b ) "  = p b  (all p ) ;  for p b  = 0 this 
is trivial, and for p b  # 0 one has b ( p b )  = 0 (see theorem 5.1(1)) which implies a ( p b )  = 0 
by (i); but by statement (2) of theorem 5.1 we have a ( p b )  = 1 - ( p b :  ( p b ) " ) ,  and 
therefore one obtains p b  = ( p b ) " ,  which proves (iii). 

Assume now (ii), and let p E R,. One can then easily show that p = p a  = ( P a ) b ,  where 
the last equality holds by (ii), and hence p E Rb, which proves the implication (ii) 3 (iv). 
The proof of the implication (iii) =$ (v) i; essentially the same, since having assumed (iii) 
we find, for an arbitrary p E Rb, that p = p b  = ( p b ) "  E R " .  

Finally, to prove the implications (iv) =$ (i) and (v) 3 (i) it is sufficient to note that for 
an arbitrary x E Lo we have 

R , = { P E P O :  ~ ( p ) = l } u { O }  
and 

E Po: x ( p )  = 0},  when x # 0 R" = { { p  
{0}, when x = 0. 

The proof of the proposition is thus complete. 

Proposition 5.3. For every a E Lo we have 

R i  = { p  E Po: p a  = 0) = R" 
and 

R"'={pEPo:p"=O}=Ra*  

As a corollary one obtains R;' = R ,  and R"" = R" for all a E Lo. 
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Proof. One can assume, without loss of generality, that a # 0. Let us suppose that 
p E Ri; then, in particular, ( p :  p a )  = 0, and hence p a  = 0 by theorem 5.1(3), which 
proves the inclusion R; c { p  E Po: p a  = O}. 

Note further that since p a  = 0, p # 0 imply ( p :  p a )  = 1 (see theorem 5.1(2)) we have 
p = p a ,  which shows that { p  E PO: p a  = 0} c R", as obviously 0 ER". 

To prove the converse inclusion, observe that the assumption p E R a (which means 
that p = qQ for some q E PO) implies that p I r for all r E R,, that is, R" c R;. 

Therefore, we have shown that R: = { p  €PO: pa  = 0}= R". The proof of the 
remaining part of the proposition is very similar, and will therefore be omitted. 

Proposition 5.4. For a, b E LO the following conditions are equivalent: 
(i) a I b, 

(ii) F,Eb Eb, 

(iii) E,& = 0 ,  
(iv) Ra LRb7 
(v) R, s R b, 

(vi) R b  C R". 

Proof. Let us assume (i) and then prove (ii). Let p be an arbitrary pure state from Po; 
since a i b implies a l - s ( p b ) ,  as s ( p 6 )  S b, we have a ( p b )  = 0,  and therefore (see the 
definition of the dual filter) we obtain (pb)a = p b  (all p ) ,  which means that F,Eb = Eb, as 
claimed. 

To prove the next implication, (ii) j (iii), it is sufficient to appeal to theorem 5.1(5); 
we then find, by using (ii), that EaEb = EaF,Eb = 0. 

Further, having assumed (iii) one easily shows that R, i H b ,  since for any pair p ,  
q E Po one then has s ( p b ) l s ( q , ) ,  as (pb), = 0 (all p )  leads to a ( p b )  = ( p b :  ( P b ) , )  = 0 (see 
theorem 5.1(2))7 and hence S ( p 6 )  I a (all p ) ;  but at the same time s(q,) C a for every 
q € P o ,  and therefore s ( p b ) i S ( q a )  for all p ,  q indeed. From s ( q a ) l s ( p b )  one obtains 
q, i p ,  (all q, p )  by lemma 3.1, that is, R, LRb as desired. 

Furthermore, from proposition 5,3 there readily follows the equivalence of (iv), (v) 
and (vi). Therefore, in order to close the proof of the proposition, we need to show that 
(v) (being equivalent to (vi)) implies (i). But this is obvious as R, -c R means that for 
every p E P with a ( p )  = 1 we have b ( p )  = 0, that is, a 1 b. This completes the proof of 
the proposition. 

We now introduce two definitions: 
A pair (Po, ( : )I consisting of a set Po together with a function ( : ): PO x PO + R is said 

to be the transition probability space (briefly, TPs-compare Guz 1979), if the following 
conditions are satisfied: 

(.rp 1) 0 s ( p :  q )  G 1 for all p ,  q E Po; 
(TP 2) There exists p o  E Po such that ( p o :  p )  = ( p :  PO) = 0 for all p E PO; 
(TP 3 )  For every p # p o  we have ( p : p )  = 1; 
(TP 4) ( p :  q )  = 1 implies p = q. 
The members of the set Po will be called pure states, and we shall call the function ( : ) 

the transition probability in Po. 
The state p o  in (TP 2) is easily shown to be unique, as, by (TP 3), p o  is the unique state 

with ( p o :  p o )  = 0. We denote it by 0 and call it the zero state. Therefore the set Po is of 
the form Po = P U {0}, where P stands for the set of non-zero pure states. 

The axioms (TP 2), (TP 3) and (TP 4) imply the following property of the transition 
probability (Guz 1979): 
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(TP 5 )  If ( p :  q )  = ( p :  r )  for all p E Po, then q = r, and similarly, if (4: p )  = ( r :  p )  for 

With the help of the transition probability we define the orthogonality in the set Po 

A set F of mappings from PO to Po will be called the logic of filters (compare Guz 

(F1) Every a E F is idempotent, that is, a* = a ;  
(F2) For each a E F its range R, determines a uniquely, that is, R, = Rb leads to 

(F3) If ( p :  p a )  = 0, then pa  = 0 and ( p :  4,) = (4,: p )  = 0 for all q E Po'?; 
(F4) If ( P :  p a )  = ( p :  4,) f 0 ,  then p a  = 4,; 
(F5) For any a E F and any non-zero p E Po there exists the unique pure state q E PO 

(F6) The mappings e,,: Po + Po, where p # 0, defined by 

every p E PO, then q = r. 

(GUZ 1979): p l q  iff ( p :  q ) = ( q : p ) = O .  

1979), if the following requirements are fulfilled: 

a = b ;  

such that q, = 0 and ( p :  p a )  + ( p :  q )  = 1 ; 

all belong to F. 
We shall now establish some facts about the orthogonality and the partial ordering 

in an abstract filter logic F. Obviously, the orthogonality and the partial ordering are 
defined in F in accordance with our previous results, that is: 
two filters a, b E F are said to be orthogonal (a  i b, in symbols), if ab = ba = 0 ,  where 0 
denotes the zero mapping from Po to Po. 

We say that a is stronger than b (or that a implies b )  and write a s b, if ba = a. 

Proposition 5.5. For a, b E F the fo1loH;ng statements are equivalent: 
(i) a s b ;  

(ii) For every p E Po satisfying ( p :  p a )  = 1 we have also ( p :  pb) = 1; 
(iii) R, E .Rb. 

Proof. Let us assume (i), and let ( p :  p a )  = 1, i.e. p = p a .  As a s b means, by definition, 
that ba = a ,  we have pb = ( p a ) b  =pb, hence ( p :  pb)  = ( p :  p a )  = 1, which proves (ii). 

The next implication, (ii)+(iii), is obvious, since for an arbitrary x E F we have 
R, = { p  E PO: ( p :  p , )  = l}u{O} (R, being, as before, the range of x) .  

Finally, assume (iii) and then prove (i). But this is trivial, since pa  E R, E Rb implies 
pa = ( p a ) b  = Pba (all p ) ,  which means that a = ba i.e. a G b, as desired. 

Proposition 5.6. For a, b E F the following conditions are equivalent: 
(i) a I b ;  

(ii) For every p E Po for which ( p :  p a )  = 1, we have pb = 0; 
(iii) R, 1 Rb. 

Proof. Let us assume (i), and let ( p :  p , )  = 1, i.e. p = p a .  As a I b leads, by definition, to 
ba = 0 ,  we have p ,  = ( p a ) b  = pba = 0, which proves (ii). 

The next implication, (ii)=$ (iii), is obvious, as for every x E F we have R, = 
{ p E PO: ( p : p ,  ) = 1) U (0)  and R = { p E Po: p ,  = 0). 

t We write, as usual, pa instead of ap. 
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Indeed, to prove the last equality, note that p E R$ implies ( p :  p x )  = 0; hence p x  = 0 
by (F3), and conversely, p x  = 0 leads by (F3) to ( p :  q x )  = ( q x :  p )  = 0 for all q E Po, which 
means that p ER:. 

Finally, assume (iii) and then prove (i). This is trivial, since R, I Rb implies R, E Rb' 
and Rb E R i ,  and therefore p a  E R, (all p )  leads to ( & ) b  = 0; similarly, p b  E Rb (all p )  
implies ( p b ) u  = 0, which proves that ab = ba = 0,  that is, a I b as claimed. 

Proposition 5.7. For every a E F we have R;' = R, and K t l  = K,, where K,, the 
so-called kernel of a, is defined as the set { p  E Po: p a  = 0). Moreover, K i  = R,. 

Proof. As we always have R,  c R :', it remains to be shown that R E R,. Thus, let us 
assume that p I R i ,  i.e. that p Iq for all q E Po with qa = 0. We shall show that p ER,. 
By(F5) thereexis tsaqEK, s u c h t h a t ( p : p , ) + ( p : q ) = l ;  hencep=p , , a s (p :q )=O,  
and we thus have p ER,, which proves the inclusion. 

Obviously, the equality R:' = R, implies K i  = (Rh)' = R,. Finally, Ki' = 
Rii = R i  = K,, and the proposition is proved. 

As an immediate consequence of the proposition above we obtain 

Corollary 5.8. Ra E Rb if and only if Ka 2 Kb. In particular, K, determines the filter a 
uniquely. 

Note now that every filter a E F may be identified with the function f a :  P+  [0, 11 
(where P = Po\{O}) defined by f a  ( p )  = ( p : p a ) ,  p E P, since, having assumed ( p : p a )  = 
( p  : p b )  for all p E P, one readily deduces that p a  = p b  whenever, for example, p b  # 0, and 
pa  = p b  = 0, provided p b  = 0, hence a = b. Moreover, one easily checks that the pair 
({ f a } a E F ,  P )  satisfies all the axioms required for a standard event-phase-space structure. 
Furthermore, we find F to be orthoisomorphic with { f a } a E F  (see propositions 5.5 and 
5.6). 

Summarising the results which we have obtained in this section, one can write 

Theorem 5.9. Given a standard event-phase-space structure (L, P) ,  there exists a 
transition probability space (Po, (:)) such that L is orthoisomorphic to some logic of 
filters acting on Po. 

Conversely, for any logic F of filters acting on a transition probability space (PO, ( : )) 
there exists a standard event-phase-space structure (L, P ) ,  where P actually coincides 
with the set Po\{O}, such that F is orthoisomorphic with L. 

Remark. If we impose an additional restriction on the transition probability 
between p and q,, namely (see Guz 1979) 

then some postulates among (Fl)-(F6), being physically not evident (e.g. (F4) and a part 
of (F3)) become superfluous, as they are consequences of (F7) (see Guz 1979). 

It should be noted at this moment that the first part of (F7) has been assumed as a 
postulate by Deliyannis (1976) for the case of the symmetric transition probability. It 
tells us (see also Deliyannis 1976) that the probability ( p :  q,) of passing from a pure 
state p to a pure state p' = q,, in which the event a occurs with certainty, is the product 
(independence!) of the probability ( p :  p a )  of the transition from p to p a  and the 
probability ( p a :  q,) of the subsequent transition from pa to 4,. In a general case of a 

(F7) ( P :  q a ) = ( P : P a ) ( P a :  40) and ( q a : P ) = ( q a : P a ) ( P a : P )  for allp, ~ E P o ,  
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non-symmetric transition probability, it is reasonable to adjoin to Deliyannis’ assump- 
tion also the ‘left-handed’ counterpart, whose physical content is similar. 

For the reason mentioned above, we will refer to (F7) as to the ‘independence 
postulate’ (see also Guz 1979). Note that (F7) is obviously satisfied in the conventional 
models of classical and quantum mechanics (see Deliyannis 1976). 

Note, finally, that if we assume also the ‘left-handed’ counterpart of the first half of 
(F3), i.e. that ( p a  : p )  = 0 implies pa  = 0, one can then prove by using (F7) the following 
fact (see Guz 1979): 

R, c R b  iff a = ba =ab. 

Note that (F2) follows as a corollary of this result. 

6. The representation theorem 

Asshme, in this section, the validity of axioms (Bl)-(B4) for an event-phase-space 
structure (L,  P) .  Additionally, assume also the postulate 

(B5) If pa  = 0 and b l a ,  then also ( p ’ ) ) ,  = 0; 
which is of technical significance for us. 

In other words, the axiom (B5) tells us that Fb(K,) E K,, provided b i a. Note that 
when L possesses an orthocomplementation ’ : L + L, by using which the orthogonality 
in L is defined by: a I b iff a C b’, then (B5) is satisfied automatically. Indeed, suppose 
that p a  = 0 and b I a for some p E Po and a, b E Lo (note that one can assume, without 
loss of generality, that a and b are non-zero, and thus a, b E L).  Then a ( p )  = ( p :  p a )  = 
0; hence a I s ( p ) ,  and therefore a I s ( p )  v b, since s ( p )  C a’ and b S a ’  implies also 
s ( p )  v b,“ a’. But s ( p b )  = s ( p )  v b - b c s ( p )  v b I a implies s ( p b )  I a ; hence 
( p ’ :  ( p  )=) = a ( p b )  = 0 ,  which leads to ( p ’ ) ,  = 0, as claimed. 

Let us now consider the embedding Lo + io described in 0 3, where in place of L we 
now take Lo = L U (0). io has, obviously, all the properties of i, and thus io becomes a 
complete orthocomplemented lattice (with respect to the set inclusion) with the 
orthocomplementation given b y M  + M I  ( M  E io), and the orthoinjection of LO into io 
is realised by the map a +aiL ={a}”. 

Theorem 6.1. Suppose (L,  P )  is an event-phase-space structure satisfying axioms 
(Bl)-(B5). Then io is atomic and orthomodular, and satisfies the covering law. 

Proof. The atomicity of Lo is almost obvious, as it follows directly from the atomicity of 
Lo (compare Guz 1978a, § 5 ) .  To prove the orthomodularity of Lo, we will need some 
lemmas. 

Lemma 6.2. If for three events a, b, e E Lo, where e is an atom, we have a I b and e i 6, 
then we also have a v e I b. 

Proof. Let us suppose that a, e I b, where e is an atom. One can assume, without loss of 
generality, that e S  a. Then by lemma 4.6 e v a = f +  a, where f is an atom (orthogonal 
to a )  chosen according to the prescription of the second half of the axiom (B3’), that is, 
f=a (p“ ) ,wherep=s - ’ ( e )  (see (B3”)). S i n c e s ( p ) = e I b , w e  have (p :pb )=b(p )=O,  
and hence P b  = 0 (see theorem 5.1); since also a I b ,  we have ( p a ) b  = 0 by (B5), and 
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hence b ( p " )  = ( p a :  ( p a ) b )  = 0 (see theorem 5.1), which leads to b i s ( p " )  = f .  But b L a ,  
b I f  and a I f  imply, by lemma 4.2, b i a + f  = a v e,  as claimed. 

Lemma 6.3. Let M be a non-empty subset of Lo; then 
(i) a E MI' and b s a imply b E MI'; 

(ii) If a ,  e E M' ', where e is an atom, then a v e EM'' 

Proof. a E M'l means that a i c for all c E M I ,  and therefore for every b G a we also 
have b I c for all c E M ' ,  that is, b E Mi'. 

Suppose now that U ,  e E M", where e is an atom. Then, obviously, a, e I c for all 
c E M I ;  hence also a v e I c (all c E M') by lemma 6.2, i.e. a v e E M' as claimed. 

Now let MELO, M#(O},  and let R be a subset of M consisting of pairwise 
orthogonal atoms. Note that by virtue of the orthomodularity and Zorn's lemma, B can 
be extended to a maximal such set. 

Any maximal subset B E M, consisting of pairwise orthogonal atoms, will be called 
an orthohasis of M (Bugajska and Bugajski 1973~) .  

Lemma 6.4. For any orthobasis B of M ( M  E LO, M # (0)) one has B" = M. 

Proof. Let us suppose, to the contrary, that BLL $ M, i.e. that there is a E M such that 
U il b for some b E B ', Since ail b, there exists by (EPS 1) and (EPS 0) (see 8 2) a pure 
state p E P such that a ( p )  = 1 and b(  p )  > 0;  hence s( p )  G a and s ( p )  il b. 

One can easily prove that for every p E P the function f + f ( p ) ,  where f~ B, takes 
non-zero values only for at most a countable subset of B, say ( f l ,  fi, . . .}. 

Further, b E B' implies b L f i  for aI1 i = 1, 2, . . . ; hence b i V i f i  by lemma 4.2, and 
therefore s ( p )  S V, f i ,  as otherwise we would have s ( p )  I b, a contradiction. Hence 
s(p)  v vi fi>Vifi, and therefore, by the orthomodularity and atomicity, there exists an 
atom f c s ( p )  v Vifi-Vifi. 

Since for all g E B \ ( f l , f z , .  . .} we have g ( p )  = 0, which leads to s ( p ) I g ,  and since 
also Vi f i l g  (by lemma 4.2), we have s ( p )  v V i f i i g  by lemma 6.2, which leads to f i g  
(for all g E B\(fl ,  f z ,  . . .}). Therefore, we have f I B. But f~ M by lemma 6.3, since all 
f i  E M  =MLi, and hence Vifi=Xi f i  E M  by lernma 4.2, and s ( p )  E M ,  as s ( p ) ~  a E M  
(see lemma 6.3). We thus arrive at a contradiction with the maximality of B (see the 
definition of an orthobasis), and the lemma is therefore proved. 

Now, we come back to the proof of the theorem, and to prove the orthomodularity 
we will follow the arguments of Bugajska and Bugajski (1973~) .  Let M I  s Mi, M I ,  
M z  E LO, and let B1 be an orthobasis of M1 (the existence of at least one orthobasis for 
every  ME^^ follows from Zorn's lemma, as we remarked before). One can then 
extend B1 to some orthobasis BZ of M z ,  and obviously B I  f Bz, as otherwise MI = 

then have, obviously, Mi MI, since B 1. B1, and moreover 

M I  v M = ( M ,  u ,)IL = (M: n MI)' = (B? n B i)L = (Bl u B)J.' = B:l= M z ,  

which proves the orthomodularity of LO. 
There yet remains to be shown the validity of the covering law in Lo. It will be 

sufficient to prove (see Guz 1978b) that statement (2) of theorem 4.7 holds for io, 
which, in turn, follows easily from the validity of (2) in Lo. In  fact, let (0, e } c  
((0, e l l  u (0, e21 u (0, e3})"7 where (0, e l  i: (0, e31 and let (0, e )  ((0, e d u  (0, ezl)L' 

B;l = B y .  I - Mi, which contradicts our assumption. Let B = BZ\B1 and M = B". We 
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(the atoms of io are the subsets of the form (0, e), where e are atoms in Lo). This, as 
may easily be seen, is equivalent to the assumption that e G e l  v e2 v e3, e # e3 ,  e S  el v 
e2, which implies by theorem 4.7(2) the existence of an atom f e  LO such that f G  e v e3 

and fs el v e2, which may equivalently be written as (0, f3 c ((0, e} U (0, e3})  '' and 
(0, f3 c ((0, el} u(0, e2})LL. This shows that statement (2) of theorem 4.7 holds in Lo, 
which is equivalent to the validity of the covering law in LO (see Guz 1978b). Thus the 
proof of the theorem is complete. 

Summarising, we find by the result of theorem 6.1 the conditions (Bl)-(B5) imposed 
on an event-phase-space structure (L,  P )  to be sufficient to imply the well-known 
Piron-MacLaren representation theorem for Lo (see, e.g., Piron 1964, MacLaren 1964, 
Varadarajan 1968, Maeda and Maeda 1970), and therefore for Lo also, provided we 
assume io to be irreducible and of dimension greater than three. 

Note that the irreducibility of Lo is not a severe restriction, as otherwise any 
irreducible part of 20 may be taken in place of the whole io. Furthermore, the 
irreducibility of Lo can also easily be understood from the physical viewpoint, as it can 
be formulated as the so-called 'superposition principle' (Guz 1978b): 

Lo is irreducible if and only if the set P of non-zero pure states possesses the 
following property, called the superposition principle: for any pair p ,  q of distinct pure 
states from P there exists a third pure state r E P, r Z p ,  q, called the superposition of p 
and q, such that r E { p ,  q}". 
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